stingray Documentation
Release 0.1.dev202

Stingray Developers

March 09, 2016

Contents

I Stingray API 3

II Indices and tables 11

Python Module Index 15

stingray Documentation, Release 0.1.dev202

Contents:

Contents 1

stingray Documentation, Release 0.1.dev202

2 Contents

Part 1

Stingray API

stingray Documentation, Release 0.1.dev202

Library of Time Series Methods For Astronomical X-ray Data.

class stingray.AveragedPowerspectrum(lc, segment_size, norm="rms’)
Make an averaged periodogram from a light curve by segmenting the light curve, Fourier-transforming each
segment and then averaging the resulting periodograms.

Parameters
Ic: lightcurve.Lightcurve object OR

iterable of lightcurve.Lightcurve objects The light curve data to be Fourier-transformed.
segment_size: float

The size of each segment to average. Note that if the total duration of each Lightcurve
object in Ic is not an integer multiple of the segment_size, then any fraction left-over at
the end of the time series will be lost.

norm: {“leahy” | “rms’’}, optional, default ‘“rms”

The normaliation of the periodogram to be used. Options are “leahy” or “rms”, default
is “rms”.

Attributes
norm: {“leahy” | “rms” the normalization of the periodogram
freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples
ps: numpy.ndarray The array of normalized squared absolute values of Fourier amplitudes
df: float The frequency resolution
m: int The number of averaged periodograms
n: int The number of data points in the light curve
nphots: float The total number of photons in the light curve

class stingray.Lightcurve(time, counts, input_counts=True)
Make a light curve object from an array of time stamps and an array of counts.

Parameters
time: iterable

A list or array of time stamps for a light curve
counts: iterable, optional, default None

A list or array of the counts in each bin corresponding to the bins defined in time (note:
not the count rate, i.e. counts/second, but the counts/bin).

input_counts: bool, optional, default True

If True, the code assumes that the input data in ‘counts’ is in units of counts/bin. If
False, it assumes the data in ‘counts’ is in counts/second.

Attributes
time: numpy.ndarray The array of midpoints of time bins
counts: numpy.ndarray The counts per bin corresponding to the bins in time.
countrate: numpy.ndarray | The counts per second in each of the bins defined in time.
ncounts: int The number of data points in the light curve.
dt: float The time resolution of the light curve.
tseg: float The total duration of the light curve.
tstart: float The start time of the light curve.

http://docs.python.org/library/time.html#module-time
http://docs.python.org/library/time.html#module-time
http://docs.python.org/library/time.html#module-time

stingray Documentation, Release 0.1.dev202

static make_lightcurve(roa, dt, tseg=None, tstart=None)
Make a light curve out of photon arrival times.

Parameters
toa: iterable

list of photon arrival times
dt: float

time resolution of the light curve (the bin width)
tseg: float, optional, default None

The total duration of the light curve. If this is None, then the total duration of the light
curve will be the interval between the arrival between the first and the last photon in
toa.

Note: If tseg is not divisible by dt (i.e. if tseg/dt is not an integer number), then the
last fractional bin will be dropped!

tstart: float, optional, default None

The start time of the light curve. If this is None, the arrival time of the first photon will
be used as the start time of the light curve.

Returns
Ic: Lightcurve object

A light curve object with the binned light curve

rebin_lightcurve(dt_new, method="sum’)
Rebin the light curve to a new time resolution. While the new resolution need not be an integer multiple
of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over
by the integer division.

Parameters
dt_new: float

The new time resolution of the light curve. Must be larger than the time resolution of
the old light curve!

method: {“sum” | “mean” | “average”}, optional, default ‘“‘sum”

This keyword argument sets whether the counts in the new bins should be summed or
averaged.

Returns
Ic_new: Lightcurve object

The Lightcurve object with the new, binned light curve.

class stingray.Powerspectrum(/c=None, norm="rms’)
Make a Periodogram (power spectrum) from a (binned) light curve. Periodograms can be Leahy normalized
or fractional rms normalized. You can also make an empty Periodogram object to populate with your own
fourier-transformed data (this can sometimes be useful when making binned periodograms).

Parameters
Ic: lightcurve.Lightcurve object, optional, default None

The light curve data to be Fourier-transformed.

norm: {“leahy” | “rms”}, optional, default “rms”

http://docs.python.org/library/constants.html#None

stingray Documentation, Release 0.1.dev202

The normaliation of the periodogram to be used. Options are “leahy” or “rms”, default
is “rms”.

Attributes
norm: {“leahy” | “rms”} | the normalization of the periodogram
freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples
ps: numpy.ndarray The array of normalized squared absolute values of Fourier amplitudes
df: float The frequency resolution
m: int The number of averaged powers in each bin
n: int The number of data points in the light curve
nphots: float The total number of photons in the light curve

classical_significances(threshold=1, trial_correction=False)

Compute the classical significances for the powers in the power spectrum, assuming an underlying noise
distribution that follows a chi-square distributions with 2M degrees of freedom, where M is the number of
powers averaged in each bin.

Note that this function will only produce correct results when the following underlying assumptions are
fulfilled: (1) The power spectrum is Leahy-normalized (2) There is no source of variability in the data other
than the periodic signal to be determined with this method. This is important! If there are other sources of
(aperiodic) variability in the data, this method will not produce correct results, but instead produce a large
number of spurious false positive detections! (3) There are no significant instrumental effects changing the
statistical distribution of the powers (e.g. pile-up or dead time)

By default, the method produces (index,p-values) for all powers in the power spectrum, where index is the
numerical index of the power in question. If a threshold is set, then only powers with p-values below
that threshold with their respective indices. If trial_correction is set to True, then the threshold will be
corrected for the number of trials (frequencies) in the power spectrum before being used.

Parameters
threshold : float

The threshold to be used when reporting p-values of potentially significant powers.
Must be between 0 and 1. Default is 1 (all p-values will be reported).

trial_correction : bool

A Boolean flag that sets whether the threshold will be correted by the number of fre-
quencies before being applied. This decreases the threshold (p-values need to be lower
to count as significant). Default is False (report all powers) though for any application
where threshold is set to something meaningful, this should also be applied!

Returns
pvals : iterable

A list of (index, p-value) tuples for all powers that have p-values lower than the threshold
specified in threshold.

compute_rms (min_freq, max_freq)

Compute the fractional rms amplitude in the periodgram between two frequencies.

Parameters
min_freq: float

The lower frequency bound for the calculation
max_freq: float

The upper frequency bound for the calculation

stingray Documentation, Release 0.1.dev202

Returns
rms: float

The fractional rms amplitude contained between min_freq and max_freq

rebin(df, method="mean’)
Rebin the periodogram to a new frequency resolution df.

Parameters
df: float

The new frequency resolution

Returns
bin_ps = Periodogram object

The newly binned periodogram

rebin_log(f=0.01)
Logarithmic rebin of the periodogram. The new frequency depends on the previous frequency modified
by a factor f:

dnu_j = dnu_{j-1}*(1+f)

Parameters
f: float, optional, default 0.01

parameter that steers the frequency resolution

Returns
binfreq: numpy.ndarray

the binned frequencies
binps: numpy.ndarray
the binned powers
nsamples: numpy.ndarray
the samples of the original periodogramincluded in each frequency bin

stingray.is_iterable(stuff)
Test if stuff is an iterable.

stingray.is_string(s)
Portable function to answer this question.

stingray.jit(fun)

stingray.optimal_bin_time (fftlen, tbin)
Vary slightly the bin time to have a power of two number of bins.

Given an FFT length and a proposed bin time, return a bin time slightly shorter than the original, that will
produce a power-of-two number of FFT bins.

stingray.rebin_data(x, y, dx_new, method=u’sum’)
Rebin some data to an arbitrary new data resolution. Either sum the data points in the new bins or average them.

Parameters
x: iterable

The dependent variable with some resolution dx_old = x[1]-x[0]

y: interable

stingray Documentation, Release 0.1.dev202

The independent variable to be binned
dx_new: float
The new resolution of the dependent variable x
method: {“sum” | “average” | “mean”’}, optional, default ‘“‘sum”

The method to be used in binning. Either sum the samples y in each new bin of x, or
take the arithmetic mean.

Returns
xbin: numpy.ndarray

The midpoints of the new bins in x
ybin: numpy.ndarray
The binned quantity y

stingray.simon(message, **kwargs)
The Statistical Interpretation MONitor.

A warning system designed to always remind the user that Simon is watching him/her.

Parameters
message : string

The message that is thrown
kwargs : dict
The rest of the arguments that are passed to warnings.warn

stingray.test(package=None, test_path=None, args=None, plugins=None, verbose=False, pastebin=None,

remote_data=False, pepS=False, pdb=Fualse, coverage=False, open_files=False, **kwargs)
Run the tests using py.test. A proper set of arguments is constructed and passed to pytest.main.

Parameters
package : str, optional

The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. If nothing is specified all
default tests are run.

test_path : str, optional

Specify location to test by path. May be a single file or directory. Must be specified
absolutely or relative to the calling directory.

args : str, optional

Additional arguments to be passed to pytest.main in the args keyword argument.
plugins : list, optional

Plugins to be passed to pytest.main in the plugins keyword argument.
verbose : bool, optional

Convenience option to turn on verbose output from py.test. Passing True is the same as
specifying ’-v’ in args.

pastebin : {‘failed’,’all’,None}, optional

Convenience option for turning on py.test pastebin output. Set to ’failed’ to upload
info for failed tests, or all’ to upload info for all tests.

remote_data : bool, optional

http://pytest.org/latest
http://pytest.org/latest/builtin.html#pytest.main
http://pytest.org/latest/builtin.html#pytest.main
http://pytest.org/latest/builtin.html#pytest.main
http://pytest.org/latest/
http://pytest.org/latest/

stingray Documentation, Release 0.1.dev202

Controls whether to run tests marked with @remote_data. These tests use online data
and are not run by default. Set to True to run these tests.

pep8 : bool, optional

Turn on PEPS checking via the pytest-pep8 plugin and disable normal tests. Same as
specifying ’--pep8 -k pep8’ in args.

pdb : bool, optional

Turn on PDB post-mortem analysis for failing tests. Same as specifying ’--pdb’ in
args.

coverage : bool, optional
Generate a test coverage report. The result will be placed in the directory htmlcov.
open_files : bool, optional

Fail when any tests leave files open. Off by default, because this adds extra run time to
the test suite. Requires the psutil package.

parallel : int, optional

When provided, run the tests in parallel on the specified number of CPUs. If parallel is
negative, it will use the all the cores on the machine. Requires the pytest-xdist plugin
installed. Only available when using Astropy 0.3 or later.

kwargs

Any additional keywords passed into this function will be passed on to the astropy test
runner. This allows use of test-related functionality implemented in later versions of
astropy without explicitly updating the package template.

10

http://pypi.python.org/pypi/pytest-pep8
https://pypi.python.org/pypi/psutil
https://pypi.python.org/pypi/pytest-xdist

Part 11

Indices and tables

11

stingray Documentation, Release 0.1.dev202

* genindex
* modindex

e search

13

stingray Documentation, Release 0.1.dev202

14

Python Module Index

S
stingray, 5

15

stingray Documentation, Release 0.1.dev202

16 Python Module Index

Index

A

AveragedPowerspectrum (class in stingray), 5

C

classical_significances() (stingray.Powerspectrum

method), 7
compute_rms() (stingray.Powerspectrum method), 7

is_iterable() (in module stingray), 8
is_string() (in module stingray), 8

J

jit() (in module stingray), 8

L

Lightcurve (class in stingray), 5

M

make_lightcurve() (stingray.Lightcurve static method), 5

O

optimal_bin_time() (in module stingray), 8

P

Powerspectrum (class in stingray), 6

R

rebin() (stingray.Powerspectrum method), 8
rebin_data() (in module stingray), 8
rebin_lightcurve() (stingray.Lightcurve method), 6
rebin_log() (stingray.Powerspectrum method), 8

S

simon() (in module stingray), 9
stingray (module), 5

T

test() (in module stingray), 9

17

	I Stingray API
	II Indices and tables
	Python Module Index

