

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	stingray v0.1.dev202

Welcome to Stingray’s documentation

Contents:

	Stingray API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	stingray v0.1.dev202

Stingray API

Library of Time Series Methods For Astronomical X-ray Data.

	
class stingray.AveragedPowerspectrum(lc, segment_size, norm='rms')[source]

	Make an averaged periodogram from a light curve by segmenting the light
curve, Fourier-transforming each segment and then averaging the
resulting periodograms.

	Parameters:	lc: lightcurve.Lightcurve object OR

iterable of lightcurve.Lightcurve objects
The light curve data to be Fourier-transformed.

segment_size: float

The size of each segment to average. Note that if the total
duration of each Lightcurve object in lc is not an integer multiple
of the segment_size, then any fraction left-over at the end of the
time series will be lost.

norm: {“leahy” | “rms”}, optional, default “rms”

The normaliation of the periodogram to be used. Options are
“leahy” or “rms”, default is “rms”.

Attributes

	norm: {“leahy” | “rms”}
	the normalization of the periodogram

	freq: numpy.ndarray
	The array of mid-bin frequencies that the Fourier transform samples

	ps: numpy.ndarray
	The array of normalized squared absolute values of Fourier amplitudes

	df: float
	The frequency resolution

	m: int
	The number of averaged periodograms

	n: int
	The number of data points in the light curve

	nphots: float
	The total number of photons in the light curve

	
class stingray.Lightcurve(time, counts, input_counts=True)[source]

	Make a light curve object from an array of time stamps and an
array of counts.

	Parameters:	time: iterable

A list or array of time stamps for a light curve

counts: iterable, optional, default None

A list or array of the counts in each bin corresponding to the
bins defined in time [http://docs.python.org/library/time.html#module-time] (note: not the count rate, i.e.
counts/second, but the counts/bin).

input_counts: bool, optional, default True

If True, the code assumes that the input data in ‘counts’
is in units of counts/bin. If False, it assumes the data
in ‘counts’ is in counts/second.

Attributes

	time: numpy.ndarray
	The array of midpoints of time bins

	counts: numpy.ndarray
	The counts per bin corresponding to the bins in time [http://docs.python.org/library/time.html#module-time].

	countrate: numpy.ndarray
	The counts per second in each of the bins defined in time [http://docs.python.org/library/time.html#module-time].

	ncounts: int
	The number of data points in the light curve.

	dt: float
	The time resolution of the light curve.

	tseg: float
	The total duration of the light curve.

	tstart: float
	The start time of the light curve.

	
static make_lightcurve(toa, dt, tseg=None, tstart=None)[source]

	Make a light curve out of photon arrival times.

	Parameters:	toa: iterable

list of photon arrival times

dt: float

time resolution of the light curve (the bin width)

tseg: float, optional, default None

The total duration of the light curve.
If this is None [http://docs.python.org/library/constants.html#None], then the total duration of the light curve will
be the interval between the arrival between the first and the last
photon in toa.

Note: If tseg is not divisible by dt (i.e. if tseg/dt is
not an integer number), then the last fractional bin will be
dropped!

tstart: float, optional, default None

The start time of the light curve.
If this is None, the arrival time of the first photon will be used
as the start time of the light curve.

	Returns:	lc: Lightcurve object

A light curve object with the binned light curve

	
rebin_lightcurve(dt_new, method='sum')[source]

	Rebin the light curve to a new time resolution. While the new
resolution need not be an integer multiple of the previous time
resolution, be aware that if it is not, the last bin will be cut
off by the fraction left over by the integer division.

	Parameters:	dt_new: float

The new time resolution of the light curve. Must be larger than
the time resolution of the old light curve!

method: {“sum” | “mean” | “average”}, optional, default “sum”

This keyword argument sets whether the counts in the new bins
should be summed or averaged.

	Returns:	lc_new: Lightcurve object

The Lightcurve object with the new, binned light curve.

	
class stingray.Powerspectrum(lc=None, norm='rms')[source]

	Make a Periodogram (power spectrum) from a (binned) light curve.
Periodograms can be Leahy normalized or fractional rms normalized.
You can also make an empty Periodogram object to populate with your
own fourier-transformed data (this can sometimes be useful when making
binned periodograms).

	Parameters:	lc: lightcurve.Lightcurve object, optional, default None

The light curve data to be Fourier-transformed.

norm: {“leahy” | “rms”}, optional, default “rms”

The normaliation of the periodogram to be used. Options are
“leahy” or “rms”, default is “rms”.

Attributes

	norm: {“leahy” | “rms”}
	the normalization of the periodogram

	freq: numpy.ndarray
	The array of mid-bin frequencies that the Fourier transform samples

	ps: numpy.ndarray
	The array of normalized squared absolute values of Fourier amplitudes

	df: float
	The frequency resolution

	m: int
	The number of averaged powers in each bin

	n: int
	The number of data points in the light curve

	nphots: float
	The total number of photons in the light curve

	
classical_significances(threshold=1, trial_correction=False)[source]

	Compute the classical significances for the powers in the power
spectrum, assuming an underlying noise distribution that follows a
chi-square distributions with 2M degrees of freedom, where M is the
number of powers averaged in each bin.

Note that this function will only produce correct results when the
following underlying assumptions are fulfilled:
(1) The power spectrum is Leahy-normalized
(2) There is no source of variability in the data other than the
periodic signal to be determined with this method. This is important!
If there are other sources of (aperiodic) variability in the data, this
method will not produce correct results, but instead produce a large
number of spurious false positive detections!
(3) There are no significant instrumental effects changing the
statistical distribution of the powers (e.g. pile-up or dead time)

By default, the method produces (index,p-values) for all powers in
the power spectrum, where index is the numerical index of the power in
question. If a threshold is set, then only powers with p-values
below that threshold with their respective indices. If
trial_correction is set to True, then the threshold will be corrected
for the number of trials (frequencies) in the power spectrum before
being used.

	Parameters:	threshold : float

The threshold to be used when reporting p-values of potentially
significant powers. Must be between 0 and 1.
Default is 1 (all p-values will be reported).

trial_correction : bool

A Boolean flag that sets whether the threshold will be correted
by the number of frequencies before being applied. This decreases
the threshold (p-values need to be lower to count as significant).
Default is False (report all powers) though for any application
where threshold is set to something meaningful, this should also
be applied!

	Returns:	pvals : iterable

A list of (index, p-value) tuples for all powers that have p-values
lower than the threshold specified in threshold.

	
compute_rms(min_freq, max_freq)[source]

	Compute the fractional rms amplitude in the periodgram
between two frequencies.

	Parameters:	min_freq: float

The lower frequency bound for the calculation

max_freq: float

The upper frequency bound for the calculation

	Returns:	rms: float

The fractional rms amplitude contained between min_freq and
max_freq

	
rebin(df, method='mean')[source]

	Rebin the periodogram to a new frequency resolution df.

	Parameters:	df: float

The new frequency resolution

	Returns:	bin_ps = Periodogram object

The newly binned periodogram

	
rebin_log(f=0.01)[source]

	Logarithmic rebin of the periodogram.
The new frequency depends on the previous frequency
modified by a factor f:

dnu_j = dnu_{j-1}*(1+f)

	Parameters:	f: float, optional, default 0.01

parameter that steers the frequency resolution

	Returns:	binfreq: numpy.ndarray

the binned frequencies

binps: numpy.ndarray

the binned powers

nsamples: numpy.ndarray

the samples of the original periodogramincluded in each
frequency bin

	
stingray.is_iterable(stuff)[source]

	Test if stuff is an iterable.

	
stingray.is_string(s)[source]

	Portable function to answer this question.

	
stingray.jit(fun)[source]

	

	
stingray.optimal_bin_time(fftlen, tbin)[source]

	Vary slightly the bin time to have a power of two number of bins.

Given an FFT length and a proposed bin time, return a bin time
slightly shorter than the original, that will produce a power-of-two number
of FFT bins.

	
stingray.rebin_data(x, y, dx_new, method=u'sum')[source]

	Rebin some data to an arbitrary new data resolution. Either sum
the data points in the new bins or average them.

	Parameters:	x: iterable

The dependent variable with some resolution dx_old = x[1]-x[0]

y: interable

The independent variable to be binned

dx_new: float

The new resolution of the dependent variable x

method: {“sum” | “average” | “mean”}, optional, default “sum”

The method to be used in binning. Either sum the samples y in
each new bin of x, or take the arithmetic mean.

	Returns:	xbin: numpy.ndarray

The midpoints of the new bins in x

ybin: numpy.ndarray

The binned quantity y

	
stingray.simon(message, **kwargs)[source]

	The Statistical Interpretation MONitor.

A warning system designed to always remind the user that Simon
is watching him/her.

	Parameters:	message : string

The message that is thrown

kwargs : dict

The rest of the arguments that are passed to warnings.warn

	
stingray.test(package=None, test_path=None, args=None, plugins=None, verbose=False, pastebin=None, remote_data=False, pep8=False, pdb=False, coverage=False, open_files=False, **kwargs)[source]

	Run the tests using py.test [http://pytest.org/latest]. A proper set
of arguments is constructed and passed to pytest.main [http://pytest.org/latest/builtin.html#pytest.main].

	Parameters:	package : str, optional

The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’.
If nothing is specified all default tests are run.

test_path : str, optional

Specify location to test by path. May be a single file or
directory. Must be specified absolutely or relative to the
calling directory.

args : str, optional

Additional arguments to be passed to pytest.main [http://pytest.org/latest/builtin.html#pytest.main] in the args
keyword argument.

plugins : list, optional

Plugins to be passed to pytest.main [http://pytest.org/latest/builtin.html#pytest.main] in the plugins keyword
argument.

verbose : bool, optional

Convenience option to turn on verbose output from py.test [http://pytest.org/latest/]. Passing
True is the same as specifying '-v' in args.

pastebin : {‘failed’,’all’,None}, optional

Convenience option for turning on py.test [http://pytest.org/latest/] pastebin output. Set to
'failed' to upload info for failed tests, or 'all' to upload
info for all tests.

remote_data : bool, optional

Controls whether to run tests marked with @remote_data. These
tests use online data and are not run by default. Set to True to
run these tests.

pep8 : bool, optional

Turn on PEP8 checking via the pytest-pep8 plugin [http://pypi.python.org/pypi/pytest-pep8] and disable normal
tests. Same as specifying '--pep8 -k pep8' in args.

pdb : bool, optional

Turn on PDB post-mortem analysis for failing tests. Same as
specifying '--pdb' in args.

coverage : bool, optional

Generate a test coverage report. The result will be placed in
the directory htmlcov.

open_files : bool, optional

Fail when any tests leave files open. Off by default, because
this adds extra run time to the test suite. Requires the
psutil [https://pypi.python.org/pypi/psutil] package.

parallel : int, optional

When provided, run the tests in parallel on the specified
number of CPUs. If parallel is negative, it will use the all
the cores on the machine. Requires the
pytest-xdist [https://pypi.python.org/pypi/pytest-xdist] plugin
installed. Only available when using Astropy 0.3 or later.

kwargs

Any additional keywords passed into this function will be passed
on to the astropy test runner. This allows use of test-related
functionality implemented in later versions of astropy without
explicitly updating the package template.

 Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	stingray v0.1.dev202

 Python Module Index

 s

 			

 		
 s	

 	
 	
 stingray	

 Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	stingray v0.1.dev202

Index

 A
 | C
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T

A

 	

 	AveragedPowerspectrum (class in stingray)

C

 	

 	classical_significances() (stingray.Powerspectrum method)

 	

 	compute_rms() (stingray.Powerspectrum method)

I

 	

 	is_iterable() (in module stingray)

 	

 	is_string() (in module stingray)

J

 	

 	jit() (in module stingray)

L

 	

 	Lightcurve (class in stingray)

M

 	

 	make_lightcurve() (stingray.Lightcurve static method)

O

 	

 	optimal_bin_time() (in module stingray)

P

 	

 	Powerspectrum (class in stingray)

R

 	

 	rebin() (stingray.Powerspectrum method)

 	rebin_data() (in module stingray)

 	

 	rebin_lightcurve() (stingray.Lightcurve method)

 	rebin_log() (stingray.Powerspectrum method)

S

 	

 	simon() (in module stingray)

 	

 	stingray (module)

T

 	

 	test() (in module stingray)

 Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		stingray v0.1.dev202 »

 All modules for which code is available

		stingray._astropy_init

		stingray.lightcurve

		stingray.powerspectrum

		stingray.utils

 © Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/minus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		stingray v0.1.dev202 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

_modules/stingray/lightcurve.html

 Navigation

 		
 index

 		
 modules |

 		stingray v0.1.dev202 »

 		Module code »

 Source code for stingray.lightcurve

"""
Definition of :class:`Lightcurve`.

:class:`Lightcurve` is used to create light curves out of photon counting data
or to save existing light curves in a class that's easy to use.
"""
import numpy as np
import stingray.utils as utils
import logging

__all__ = ["Lightcurve"]

[docs]class Lightcurve(object):
 def __init__(self, time, counts, input_counts=True):
 """
 Make a light curve object from an array of time stamps and an
 array of counts.

 Parameters

 time: iterable
 A list or array of time stamps for a light curve

 counts: iterable, optional, default None
 A list or array of the counts in each bin corresponding to the
 bins defined in `time` (note: **not** the count rate, i.e.
 counts/second, but the counts/bin).

 input_counts: bool, optional, default True
 If True, the code assumes that the input data in 'counts'
 is in units of counts/bin. If False, it assumes the data
 in 'counts' is in counts/second.

 Attributes

 time: numpy.ndarray
 The array of midpoints of time bins

 counts: numpy.ndarray
 The counts per bin corresponding to the bins in `time`.

 countrate: numpy.ndarray
 The counts per second in each of the bins defined in `time`.

 ncounts: int
 The number of data points in the light curve.

 dt: float
 The time resolution of the light curve.

 tseg: float
 The total duration of the light curve.

 tstart: float
 The start time of the light curve.

 """

 assert np.all(np.isfinite(time)), "There are inf or NaN values in " \
 "your time array!"

 assert np.all(np.isfinite(counts)), "There are inf or NaN values in " \
 "your counts array!"

 self.time = np.asarray(time)
 self.dt = time[1] - time[0]

 if input_counts:
 self.counts = np.asarray(counts)
 self.countrate = self.counts / self.dt
 else:
 self.countrate = np.asarray(counts)
 self.counts = self.countrate * self.dt

 self.ncounts = self.counts.shape[0]
 self.tseg = self.time[-1] - self.time[0] + self.dt
 self.tstart = self.time[0] - 0.5*self.dt

 @staticmethod
[docs] def make_lightcurve(toa, dt, tseg=None, tstart=None):

 """
 Make a light curve out of photon arrival times.

 Parameters

 toa: iterable
 list of photon arrival times

 dt: float
 time resolution of the light curve (the bin width)

 tseg: float, optional, default None
 The total duration of the light curve.
 If this is `None`, then the total duration of the light curve will
 be the interval between the arrival between the first and the last
 photon in `toa`.

 Note: If tseg is not divisible by dt (i.e. if tseg/dt is
 not an integer number), then the last fractional bin will be
 dropped!

 tstart: float, optional, default None
 The start time of the light curve.
 If this is None, the arrival time of the first photon will be used
 as the start time of the light curve.

 Returns

 lc: :class:`Lightcurve` object
 A light curve object with the binned light curve

 """

 # tstart is an optional parameter to set a starting time for
 # the light curve in case this does not coincide with the first photon
 if tstart is None:
 # if tstart is not set, assume light curve starts with first photon
 tstart = toa[0]

 # compute the number of bins in the light curve
 # for cases where tseg/dt are not integer, computer one
 # last time bin more that we have to subtract in the end
 if tseg is None:
 tseg = toa[-1] - toa[0]

 logging.info("make_lightcurve: tseg: " + str(tseg))

 timebin = np.int(tseg/dt)
 logging.info("make_lightcurve: timebin: " + str(timebin))

 tend = tstart + timebin*dt

 counts, histbins = np.histogram(toa, bins=timebin,
 range=[tstart, tend])

 dt = histbins[1] - histbins[0]

 time = histbins[:-1] + 0.5*dt

 counts = np.asarray(counts)

 return Lightcurve(time, counts)

[docs] def rebin_lightcurve(self, dt_new, method='sum'):
 """
 Rebin the light curve to a new time resolution. While the new
 resolution need not be an integer multiple of the previous time
 resolution, be aware that if it is not, the last bin will be cut
 off by the fraction left over by the integer division.

 Parameters

 dt_new: float
 The new time resolution of the light curve. Must be larger than
 the time resolution of the old light curve!

 method: {"sum" | "mean" | "average"}, optional, default "sum"
 This keyword argument sets whether the counts in the new bins
 should be summed or averaged.

 Returns

 lc_new: :class:`Lightcurve` object
 The :class:`Lightcurve` object with the new, binned light curve.
 """
 assert dt_new >= self.dt, "New time resolution must be larger than " \
 "old time resolution!"

 bin_time, bin_counts, _ = utils.rebin_data(self.time,
 self.counts,
 dt_new, method)

 lc_new = Lightcurve(bin_time, bin_counts)
 return lc_new

 © Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

_modules/stingray/_astropy_init.html

 Navigation

 		
 index

 		
 modules |

 		stingray v0.1.dev202 »

 		Module code »

 Source code for stingray._astropy_init

Licensed under a 3-clause BSD style license - see LICENSE.rst

__all__ = ['__version__', '__githash__', 'test']

this indicates whether or not we are in the package's setup.py
try:
 _ASTROPY_SETUP_
except NameError:
 from sys import version_info
 if version_info[0] >= 3:
 import builtins
 else:
 import __builtin__ as builtins
 builtins._ASTROPY_SETUP_ = False

try:
 from .version import version as __version__
except ImportError:
 __version__ = ''
try:
 from .version import githash as __githash__
except ImportError:
 __githash__ = ''

set up the test command
def _get_test_runner():
 import os
 from astropy.tests.helper import TestRunner
 return TestRunner(os.path.dirname(__file__))

[docs]def test(package=None, test_path=None, args=None, plugins=None,
 verbose=False, pastebin=None, remote_data=False, pep8=False,
 pdb=False, coverage=False, open_files=False, **kwargs):
 """
 Run the tests using `py.test <http://pytest.org/latest>`__. A proper set
 of arguments is constructed and passed to `pytest.main`_.

 .. _py.test: http://pytest.org/latest/
 .. _pytest.main: http://pytest.org/latest/builtin.html#pytest.main

 Parameters

 package : str, optional
 The name of a specific package to test, e.g. 'io.fits' or 'utils'.
 If nothing is specified all default tests are run.

 test_path : str, optional
 Specify location to test by path. May be a single file or
 directory. Must be specified absolutely or relative to the
 calling directory.

 args : str, optional
 Additional arguments to be passed to pytest.main_ in the ``args``
 keyword argument.

 plugins : list, optional
 Plugins to be passed to pytest.main_ in the ``plugins`` keyword
 argument.

 verbose : bool, optional
 Convenience option to turn on verbose output from py.test_. Passing
 True is the same as specifying ``'-v'`` in ``args``.

 pastebin : {'failed','all',None}, optional
 Convenience option for turning on py.test_ pastebin output. Set to
 ``'failed'`` to upload info for failed tests, or ``'all'`` to upload
 info for all tests.

 remote_data : bool, optional
 Controls whether to run tests marked with @remote_data. These
 tests use online data and are not run by default. Set to True to
 run these tests.

 pep8 : bool, optional
 Turn on PEP8 checking via the `pytest-pep8 plugin
 <http://pypi.python.org/pypi/pytest-pep8>`_ and disable normal
 tests. Same as specifying ``'--pep8 -k pep8'`` in ``args``.

 pdb : bool, optional
 Turn on PDB post-mortem analysis for failing tests. Same as
 specifying ``'--pdb'`` in ``args``.

 coverage : bool, optional
 Generate a test coverage report. The result will be placed in
 the directory htmlcov.

 open_files : bool, optional
 Fail when any tests leave files open. Off by default, because
 this adds extra run time to the test suite. Requires the
 `psutil <https://pypi.python.org/pypi/psutil>`_ package.

 parallel : int, optional
 When provided, run the tests in parallel on the specified
 number of CPUs. If parallel is negative, it will use the all
 the cores on the machine. Requires the
 `pytest-xdist <https://pypi.python.org/pypi/pytest-xdist>`_ plugin
 installed. Only available when using Astropy 0.3 or later.

 kwargs
 Any additional keywords passed into this function will be passed
 on to the astropy test runner. This allows use of test-related
 functionality implemented in later versions of astropy without
 explicitly updating the package template.

 """
 test_runner = _get_test_runner()
 return test_runner.run_tests(
 package=package, test_path=test_path, args=args,
 plugins=plugins, verbose=verbose, pastebin=pastebin,
 remote_data=remote_data, pep8=pep8, pdb=pdb,
 coverage=coverage, open_files=open_files, **kwargs)

if not _ASTROPY_SETUP_:
 import os
 from warnings import warn
 from astropy import config

 # add these here so we only need to cleanup the namespace at the end
 config_dir = None

 if not os.environ.get('ASTROPY_SKIP_CONFIG_UPDATE', False):
 config_dir = os.path.dirname(__file__)
 config_template = os.path.join(config_dir, __package__ + ".cfg")
 if os.path.isfile(config_template):
 try:
 config.configuration.update_default_config(
 __package__, config_dir, version=__version__)
 except TypeError as orig_error:
 try:
 config.configuration.update_default_config(
 __package__, config_dir)
 except config.configuration.ConfigurationDefaultMissingError as e:
 wmsg = (e.args[0] + " Cannot install default profile. If you are "
 "importing from source, this is expected.")
 warn(config.configuration.ConfigurationDefaultMissingWarning(wmsg))
 del e
 except:
 raise orig_error

 © Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

_modules/stingray/utils.html

 Navigation

 		
 index

 		
 modules |

 		stingray v0.1.dev202 »

 		Module code »

 Source code for stingray.utils

from __future__ import (absolute_import, unicode_literals, division,
 print_function)
import numpy as np
import warnings
import sys
If numba is installed, import jit. Otherwise, define an empty decorator with
the same name.

try:
 from numba import jit
except:
[docs] def jit(fun):
 return fun

[docs]def simon(message, **kwargs):
 """
 The Statistical Interpretation MONitor.

 A warning system designed to always remind the user that Simon
 is watching him/her.

 Parameters

 message : string
 The message that is thrown
 kwargs : dict
 The rest of the arguments that are passed to warnings.warn
 """
 warnings.warn("SIMON says: {0}".format(message), **kwargs)

[docs]def rebin_data(x, y, dx_new, method='sum'):

 """
 Rebin some data to an arbitrary new data resolution. Either sum
 the data points in the new bins or average them.

 Parameters

 x: iterable
 The dependent variable with some resolution dx_old = x[1]-x[0]

 y: interable
 The independent variable to be binned

 dx_new: float
 The new resolution of the dependent variable x

 method: {"sum" | "average" | "mean"}, optional, default "sum"
 The method to be used in binning. Either sum the samples y in
 each new bin of x, or take the arithmetic mean.

 Returns

 xbin: numpy.ndarray
 The midpoints of the new bins in x

 ybin: numpy.ndarray
 The binned quantity y
 """

 dx_old = x[1] - x[0]

 assert dx_new >= dx_old, "New frequency resolution must be larger than " \
 "old frequency resolution."

 step_size = dx_new / dx_old

 output = []
 for i in np.arange(0, y.shape[0], step_size):
 total = 0

 prev_frac = int(i+1) - i
 prev_bin = int(i)
 total += prev_frac * y[prev_bin]

 if i + step_size < len(x):
 # Fractional part of next bin:
 next_frac = i+step_size - int(i+step_size)
 next_bin = int(i+step_size)
 total += next_frac * y[next_bin]

 total += sum(y[int(i+1):int(i+step_size)])
 output.append(total)

 output = np.asarray(output)

 if method in ['mean', 'avg', 'average', 'arithmetic mean']:
 ybin = output / np.float(step_size)

 elif method == "sum":
 ybin = output
 else:
 raise Exception("Method for summing or averaging not recognized. "
 "Please enter either 'sum' or 'mean'.")

 tseg = x[-1] - x[0] + dx_old

 if (tseg/dx_new % 1) > 0:
 ybin = ybin[:-1]

 xbin = np.arange(ybin.shape[0])*dx_new + x[0] - dx_old + dx_new

 return xbin, ybin, step_size

def _assign_value_if_none(value, default):
 if value is None:
 return default
 else:
 return value

def _look_for_array_in_array(array1, array2):
 for a1 in array1:
 if a1 in array2:
 return a1

[docs]def is_string(s): # pragma : no cover
 """Portable function to answer this question."""
 PY2 = sys.version_info[0] == 2
 if PY2:
 return isinstance(s, basestring) # NOQA
 else:
 return isinstance(s, str) # NOQA

[docs]def is_iterable(stuff):
 """Test if stuff is an iterable."""
 import collections

 return isinstance(stuff, collections.Iterable)

def _order_list_of_arrays(data, order):
 if hasattr(data, 'items'):
 data = dict([(i[0], i[1][order])
 for i in data.items()])
 elif is_iterable(data):
 data = [i[order] for i in data]
 else:
 data = None
 return data

[docs]def optimal_bin_time(fftlen, tbin):
 """Vary slightly the bin time to have a power of two number of bins.

 Given an FFT length and a proposed bin time, return a bin time
 slightly shorter than the original, that will produce a power-of-two number
 of FFT bins.
 """
 import numpy as np
 return fftlen / (2 ** np.ceil(np.log2(fftlen / tbin)))

 © Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

_modules/stingray/powerspectrum.html

 Navigation

 		
 index

 		
 modules |

 		stingray v0.1.dev202 »

 		Module code »

 Source code for stingray.powerspectrum

from __future__ import division
import numpy as np
import scipy
import scipy.stats
import scipy.fftpack
import scipy.optimize
import logging

import stingray.lightcurve as lightcurve
import stingray.utils as utils
from stingray.utils import simon

__all__ = ["Powerspectrum", "AveragedPowerspectrum"]

def classical_pvalue(power, nspec):
 """
 Compute the probability of detecting the current power under
 the assumption that there is no periodic oscillation in the data.

 This computes the single-trial p-value that the power was
 observed under the null hypothesis that there is no signal in
 the data.

 Important: the underlying assumptions that make this calculation valid
 are:
 (1) the powers in the power spectrum follow a chi-square distribution
 (2) the power spectrum is normalized according to Leahy (1984), such
 that the powers have a mean of 2 and a variance of 4
 (3) there is only white noise in the light curve. That is, there is no
 aperiodic variability that would change the overall shape of the power
 spectrum.

 Also note that the p-value is for a *single trial*, i.e. the power
 currently being tested. If more than one power or more than one power
 spectrum are being tested, the resulting p-value must be corrected for the
 number of trials (Bonferroni correction).

 Mathematical formulation in Groth, 1975.
 Original implementation in IDL by Anna L. Watts.

 Parameters

 power : float
 The squared Fourier amplitude of a spectrum to be evaluated

 nspec : int
 The number of spectra or frequency bins averaged in `power`.
 This matters because averaging spectra or frequency bins increases
 the signal-to-noise ratio, i.e. makes the statistical distributions
 of the noise narrower, such that a smaller power might be very
 significant in averaged spectra even though it would not be in a single
 power spectrum.

 """

 assert np.isfinite(power), "power must be a finite floating point number!"
 assert power > 0, "power must be a positive real number!"
 assert np.isfinite(nspec), "nspec must be a finite integer number"
 assert nspec >= 1, "nspec must be larger or equal to 1"
 assert np.isclose(nspec % 1, 0), "nspec must be an integer number!"

 # If the power is really big, it's safe to say it's significant,
 # and the p-value will be nearly zero
 if (power*nspec) > 30000:
 simon("Probability of no signal too miniscule to calculate.")
 return 0.0

 else:
 pval = _pavnosigfun(power, nspec)
 return pval

def _pavnosigfun(power, nspec):
 """
 Helper function doing the actual calculation of the p-value.
 """
 sum = 0.0
 m = nspec - 1

 pn = power * nspec

 while m >= 0:

 s = 0.0
 for i in range(int(m)-1):
 s += np.log(float(m-i))

 logterm = m*np.log(pn/2) - pn/2 - s
 term = np.exp(logterm)
 ratio = sum / term

 if ratio > 1.0e15:
 return sum

 sum += term
 m -= 1

 return sum

[docs]class Powerspectrum(object):

 def __init__(self, lc=None, norm='rms'):
 """
 Make a Periodogram (power spectrum) from a (binned) light curve.
 Periodograms can be Leahy normalized or fractional rms normalized.
 You can also make an empty Periodogram object to populate with your
 own fourier-transformed data (this can sometimes be useful when making
 binned periodograms).

 Parameters

 lc: lightcurve.Lightcurve object, optional, default None
 The light curve data to be Fourier-transformed.

 norm: {"leahy" | "rms"}, optional, default "rms"
 The normaliation of the periodogram to be used. Options are
 "leahy" or "rms", default is "rms".

 Attributes

 norm: {"leahy" | "rms"}
 the normalization of the periodogram

 freq: numpy.ndarray
 The array of mid-bin frequencies that the Fourier transform samples

 ps: numpy.ndarray
 The array of normalized squared absolute values of Fourier
 amplitudes

 df: float
 The frequency resolution

 m: int
 The number of averaged powers in each bin

 n: int
 The number of data points in the light curve

 nphots: float
 The total number of photons in the light curve

 """

 # TODO: One should be able to convert from rms to Leahy and do this
 # anyway!
 assert isinstance(norm, str), "norm is not a string!"

 assert norm.lower() in ["rms", "leahy"], \
 "norm must be either 'rms' or 'leahy'!"

 self.norm = norm.lower()

 # check if input data is a Lightcurve object, if not make one or
 # make an empty Periodogram object if lc == time == counts == None
 if lc is not None:
 pass
 else:
 self.freq = None
 self.ps = None
 self.df = None
 self.nphots = None
 self.m = 1
 self.n = None
 return

 self._make_powerspectrum(lc)

 def _make_powerspectrum(self, lc):

 # make sure my inputs work!
 assert isinstance(lc, lightcurve.Lightcurve), \
 "lc must be a lightcurve.Lightcurve object!"

 # total number of photons is the sum of the
 # counts in the light curve
 self.nphots = np.sum(lc.counts)

 # the number of data points in the light curve
 self.n = lc.counts.shape[0]

 # the frequency resolution
 self.df = 1 / lc.tseg

 # the number of averaged periodograms in the final output
 # This should *always* be 1 here
 self.m = 1

 # make the actual Fourier transform
 self.freq, self.unnorm_powers = self._fourier_modulus(lc)

 # normalize to either Leahy or rms normalization
 self.ps = self._normalize_periodogram(self.unnorm_powers, lc)

 def _fourier_modulus(self, lc):
 """
 Fourier transform the light curve, then square the
 absolute value of the Fourier amplitudes.

 Parameters

 lc: lightcurve.Lightcurve object
 The light curve to be Fourier transformed

 Returns

 fr: numpy.ndarray
 The squared absolute value of the Fourier amplitudes

 """
 fourier = scipy.fftpack.fft(lc.counts) # do Fourier transform
 freqs = scipy.fftpack.fftfreq(lc.counts.shape[0], lc.dt)
 fr = np.abs(fourier[freqs > 0])**2.
 return freqs[freqs > 0], fr

 def _normalize_periodogram(self, unnorm_powers, lc):
 """
 Normalize the periodogram to either Leahy or RMS normalization.
 In Leahy normalization, the periodogram is normalized in such a way
 that a flat light curve of Poissonian data will make a realization of
 the power spectrum in which the powers are distributed as Chi^2 with
 two degrees of freedom (with a mean of 2 and a variance of 4).

 In rms normalization, the periodogram will be normalized such that
 the integral of the periodogram will equal the total variance in the
 light curve divided by the mean of the light curve squared.

 Parameters

 unnorm_powers: numpy.ndarray
 The squared absolute value of the Fourier amplitudes

 lc: lightcurve.Lightcurve object
 The input light curve

 Returns

 ps: numpy.nd.array
 The normalized periodogram
 """
 if self.norm.lower() == 'leahy':
 p = unnorm_powers
 ps = 2 * p / self.nphots

 elif self.norm.lower() == 'rms':
 p = unnorm_powers / np.float(self.n**2)
 ps = (p*2*lc.tseg) / (np.mean(lc.counts)**2)

 else:
 raise Exception("Normalization not recognized!")

 return ps

[docs] def rebin(self, df, method="mean"):
 """
 Rebin the periodogram to a new frequency resolution df.

 Parameters

 df: float
 The new frequency resolution

 Returns

 bin_ps = Periodogram object
 The newly binned periodogram
 """

 # rebin power spectrum to new resolution
 binfreq, binps, step_size = utils.rebin_data(self.freq[1:],
 self.ps[1:], df,
 method=method)

 # make an empty periodogram object
 bin_ps = Powerspectrum()

 # store the binned periodogram in the new object
 bin_ps.norm = self.norm
 bin_ps.freq = np.hstack([binfreq[0] - self.df, binfreq])
 bin_ps.ps = np.hstack([self.ps[0], binps])
 bin_ps.df = df
 bin_ps.n = self.n
 bin_ps.nphots = self.nphots
 bin_ps.m = int(step_size)

 return bin_ps

[docs] def rebin_log(self, f=0.01):
 """
 Logarithmic rebin of the periodogram.
 The new frequency depends on the previous frequency
 modified by a factor f:

 dnu_j = dnu_{j-1}*(1+f)

 Parameters

 f: float, optional, default 0.01
 parameter that steers the frequency resolution

 Returns

 binfreq: numpy.ndarray
 the binned frequencies

 binps: numpy.ndarray
 the binned powers

 nsamples: numpy.ndarray
 the samples of the original periodogramincluded in each
 frequency bin
 """

 minfreq = self.freq[1] * 0.5 # frequency to start from
 maxfreq = self.freq[-1] # maximum frequency to end
 binfreq = [minfreq, minfreq + self.df] # first
 df = self.freq[1] # the frequency resolution of the first bin

 # until we reach the maximum frequency, increase the width of each
 # frequency bin by f
 while binfreq[-1] <= maxfreq:
 binfreq.append(binfreq[-1] + df*(1.0+f))
 df = binfreq[-1] - binfreq[-2]

 # compute the mean of the powers that fall into each new frequency bin
 binps, bin_edges, binno = scipy.stats.binned_statistic(
 self.freq, self.ps, statistic="mean", bins=binfreq)

 # compute the number of powers in each frequency bin
 nsamples = np.array([len(binno[np.where(binno == i)[0]])
 for i in range(np.max(binno))])

 # the frequency resolution
 df = np.diff(binfreq)

 # shift the lower bin edges to the middle of the bin and drop the
 # last right bin edge
 binfreq = binfreq[:-1] + df/2

 return binfreq, binps, nsamples

[docs] def compute_rms(self, min_freq, max_freq):
 """
 Compute the fractional rms amplitude in the periodgram
 between two frequencies.

 Parameters

 min_freq: float
 The lower frequency bound for the calculation

 max_freq: float
 The upper frequency bound for the calculation

 Returns

 rms: float
 The fractional rms amplitude contained between min_freq and
 max_freq

 """
 # assert min_freq >= self.freq[0], "Lower frequency bound must be " \
 # "larger or equal the minimum " \
 # "frequency in the periodogram!"

 # assert max_freq <= self.freq[-1], "Upper frequency bound must be " \
 # "smaller or equal the maximum " \
 # "frequency in the periodogram!"

 minind = self.freq.searchsorted(min_freq)
 maxind = self.freq.searchsorted(max_freq)
 powers = self.ps[minind:maxind]
 if self.norm.lower() == 'leahy':
 rms = np.sqrt(np.sum(powers)/self.nphots)
 elif self.norm.lower() == "rms":
 rms = np.sqrt(np.sum(powers*self.df))
 else:
 raise Exception("Normalization not recognized!")

 rms_err = self._rms_error(powers)

 return rms, rms_err

 def _rms_error(self, powers):
 """
 Compute the error on the fractional rms amplitude using error
 propagation.
 Note: this uses the actual measured powers, which is not
 strictly correct. We should be using the underlying power spectrum,
 but in the absence of an estimate of that, this will have to do.

 Parameters

 powers: iterable
 The list of powers used to compute the fractional rms amplitude.

 Returns

 delta_rms: float
 the error on the fractional rms amplitude
 """
 p_err = scipy.stats.chi2(2.0*self.m).var() * powers / self.m
 drms_dp = 1 / (2*np.sqrt(np.sum(powers)*self.df))
 delta_rms = np.sum(p_err*drms_dp*self.df)
 return delta_rms

[docs] def classical_significances(self, threshold=1, trial_correction=False):
 """
 Compute the classical significances for the powers in the power
 spectrum, assuming an underlying noise distribution that follows a
 chi-square distributions with 2M degrees of freedom, where M is the
 number of powers averaged in each bin.

 Note that this function will *only* produce correct results when the
 following underlying assumptions are fulfilled:
 (1) The power spectrum is Leahy-normalized
 (2) There is no source of variability in the data other than the
 periodic signal to be determined with this method. This is important!
 If there are other sources of (aperiodic) variability in the data, this
 method will *not* produce correct results, but instead produce a large
 number of spurious false positive detections!
 (3) There are no significant instrumental effects changing the
 statistical distribution of the powers (e.g. pile-up or dead time)

 By default, the method produces (index,p-values) for all powers in
 the power spectrum, where index is the numerical index of the power in
 question. If a `threshold` is set, then only powers with p-values
 below that threshold with their respective indices. If
 `trial_correction` is set to True, then the threshold will be corrected
 for the number of trials (frequencies) in the power spectrum before
 being used.

 Parameters

 threshold : float
 The threshold to be used when reporting p-values of potentially
 significant powers. Must be between 0 and 1.
 Default is 1 (all p-values will be reported).

 trial_correction : bool
 A Boolean flag that sets whether the `threshold` will be correted
 by the number of frequencies before being applied. This decreases
 the threshold (p-values need to be lower to count as significant).
 Default is False (report all powers) though for any application
 where `threshold` is set to something meaningful, this should also
 be applied!

 Returns

 pvals : iterable
 A list of (index, p-value) tuples for all powers that have p-values
 lower than the threshold specified in `threshold`.

 """
 assert self.norm == "leahy", "This method only works on " \
 "Leahy-normalized power spectra!"

 # calculate p-values for all powers
 # leave out zeroth power since it just encodes the number of photons!
 pv = np.array([classical_pvalue(power, self.m)
 for power in self.ps])

 # if trial correction is used, then correct the threshold for
 # the number of powers in the power spectrum
 if trial_correction:
 threshold /= self.ps.shape[0]

 # need to add 1 to the indices to make up for the fact that
 # we left out the first power above!
 indices = np.where(pv < threshold)[0]

 pvals = np.vstack([pv[indices], indices])

 return pvals

[docs]class AveragedPowerspectrum(Powerspectrum):

 def __init__(self, lc, segment_size, norm="rms"):
 """
 Make an averaged periodogram from a light curve by segmenting the light
 curve, Fourier-transforming each segment and then averaging the
 resulting periodograms.

 Parameters

 lc: lightcurve.Lightcurve object OR
 iterable of lightcurve.Lightcurve objects
 The light curve data to be Fourier-transformed.

 segment_size: float
 The size of each segment to average. Note that if the total
 duration of each Lightcurve object in lc is not an integer multiple
 of the segment_size, then any fraction left-over at the end of the
 time series will be lost.

 norm: {"leahy" | "rms"}, optional, default "rms"
 The normaliation of the periodogram to be used. Options are
 "leahy" or "rms", default is "rms".

 Attributes

 norm: {"leahy" | "rms"}
 the normalization of the periodogram

 freq: numpy.ndarray
 The array of mid-bin frequencies that the Fourier transform samples

 ps: numpy.ndarray
 The array of normalized squared absolute values of Fourier
 amplitudes

 df: float
 The frequency resolution

 m: int
 The number of averaged periodograms

 n: int
 The number of data points in the light curve

 nphots: float
 The total number of photons in the light curve

 """
 assert np.isfinite(segment_size), "segment_size must be finite!"

 self.norm = norm.lower()
 self.segment_size = segment_size

 Powerspectrum.__init__(self, lc, norm)

 return

 def _make_segment_psd(self, lc, segment_size):
 assert isinstance(lc, lightcurve.Lightcurve)

 # number of bins per segment
 nbins = int(segment_size/lc.dt)

 start_ind = 0
 end_ind = nbins

 ps_all = []
 nphots_all = []
 while end_ind <= lc.counts.shape[0]:
 time = lc.time[start_ind:end_ind]
 counts = lc.counts[start_ind:end_ind]
 lc_seg = lightcurve.Lightcurve(time, counts)
 ps_seg = Powerspectrum(lc_seg, norm=self.norm)
 ps_all.append(ps_seg)
 nphots_all.append(np.sum(lc_seg.counts))
 start_ind += nbins
 end_ind += nbins

 return ps_all, nphots_all

 def _make_powerspectrum(self, lc):

 # chop light curves into segments
 if isinstance(lc, lightcurve.Lightcurve):
 ps_all, nphots_all = self._make_segment_psd(lc,
 self.segment_size)
 else:
 ps_all, nphots_all = [], []
 for lc_seg in lc:
 ps_sep, nphots_sep = self._make_segment_psd(lc_seg,
 self.segment_size)

 ps_all.append(ps_sep)
 nphots_all.append(nphots_sep)

 ps_all = np.hstack(ps_all)
 nphots_all = np.hstack(nphots_all)

 m = len(ps_all)
 nphots = np.mean(nphots_all)
 ps_avg = np.zeros_like(ps_all[0].ps)
 for ps in ps_all:
 ps_avg += ps.ps

 ps_avg /= np.float(m)

 self.freq = ps_all[0].freq
 self.ps = ps_avg
 self.m = m
 self.df = ps_all[0].df
 self.n = ps_all[0].n
 self.nphots = nphots

 © Copyright 2016, Stingray Developers.
 Last updated on 09 Mar 2016.
 Created using Sphinx 1.3.5.

